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ABSTRACT

Statistical models combined with the local plasma frequency approach applied to the atomic electron density are employed to study the photo-
ionization cross-section for complex atoms. It is demonstrated that the Thomas–Fermi atom provides surprisingly good overall agreement even for
complex outer-shell configurations, where quantum mechanical approaches that include electron correlations are exceedingly difficult. Quantum
mechanical photoionization calculations are studiedwith respect to energy and nl quantum number for hydrogen-like and non-hydrogen-like atoms
and ions.Ageneralized scaledphotoionizationmodel (GSPM)basedon the simultaneous introductionof effective charges fornon-H-like energies and
scaling charges for the reduced energy scale allows the development of analytical formulas for all states nl. Explicit expressions fornl� 1s, 2s, 2p, 3s, 3p,
3d, 4s, 4p, 4d, 4f, and 5s are obtained. Application to H-like and non-H-like atoms and ions and to neutral atoms demonstrates the universality of the
scaled analytical approach including inner-shell photoionization. Likewise,GSPMdescribes the near-threshold behavior and high-energy asymptotes
well. Finally, we discuss the various models and the correspondence principle along with experimental data and with respect to a good compromise
between generality and precision. The results are also relevant to large-scale integrated light–matter interaction simulations, e.g., X-ray free-electron
laser interactions with matter or photoionization driven by a broadband radiation field such as Planckian radiation.

©2020Author(s). All article content, exceptwhere otherwisenoted, is licensedunderaCreativeCommonsAttribution (CCBY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/5.0022751

I. INTRODUCTION

Most of the matter in the universe is ionized and in the so-called
plasma state.1–3 There are essentially two main sources of ionization:
collisional ionization due to particle impact (by electrons, atoms, and
ions) and photoionization. In astrophysical plasmas, including as-
trophysical laboratory plasmas, photoionization of radiation fields
drives important plasma ionization.4–7 The photoionization rate and
the ionization degree of the plasma depend on the nature of the
radiation sources, in particular on the spectral distribution of the
photon intensity and the photoionization cross-sections.

In inertial confinement fusion, megajoule laser irradiation of the
innerwalls of the hohlraum creates a radiation field that in turn results
in the implosion of the deuterium–tritium (DT) capsule.7,8 To create
the most homogenous implosion conditions, a near-Planckian ra-
diation field is envisaged.

For laboratory studies, the rapid development of laser-driven
light sources, i.e., higher-harmonic generation (HHG),9 as well as
extreme ultraviolet (XUV)/X-ray free-electron lasers (XUV-FEL/
XFEL),10–12 has stimulated particular interest in the photoionization
of inner atomic and ionic shells. In fact, owing to the high laser
intensity at X-ray energies, photoionization of inner atomic shells by
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XFEL radiation is the primary source of matter heating: for example,
in XFEL–solid matter interaction when microfocusing is applied, the
photon density in the light pencil is near solid density. As almost all
inner shells in the lattice are photoionized (a so-called hollow crystal),
massive numbers of photoelectrons are generated, which are followed
by Auger electrons. Owing to the large number of Auger electrons,
significant heating is initiated; this is so-called Auger electron
heating.13–16 Moreover, owing to the high electron density in the
conduction band, the heating is amplified by three-body recombi-
nation heating.17 Therefore, simulation of XFEL interaction with
solids requires expressions for photoionization cross-sections fromall
configurations, including in particular inner atomic shells.15,18

Similar considerations hold true for high-energy-density physics,
where intense radiationfields drive importantmatter ionization: general
expressions for the photoionization cross-sections from any configu-
rations of rather complex atoms and ions are required in order to realize
large-scale integrated simulations in light–matter interaction physics.

It is therefore the aim of the present work to develop various
methods that are suitable for general implementation in integrated
simulations in which a reasonable compromise between generality and
precision can be achieved. In Sec. II, we present an introduction to the
photoionizationprocesses in aquantummechanical approach, including
the continuum oscillator strengths, the Born relation, the plasma fre-
quency approach, and themixedquantum–classical approach. InSec. III,
we present studies of photoionization for H-like atoms and discuss
important scaling relations.We present quantummechanical numerical
calculations in Sec. IV, where we also propose generalized scaled ana-
lytical photoionization cross-section formulas for any configuration. In
Sec. V, we consider inner-shell photoionization. We present a com-
parison with experimental data in Sec. VI, where we also discuss various
types of models in the plasma frequency approach. In Sec. VII, we
summarize formulas for the photoionization rates for different types of
radiation fields. This is followed by the conclusion in Sec. VIII.

II. GENERAL RELATIONS AND APPROXIMATIONS

A. Quantum mechanical approach and continuum
oscillator strength

Let an atom be excited as a result of absorption of a photon of an
external field. Photoabsorption is characterized by a spectral cross-
section that is connected with the probability per unit time for ex-
citation of a bound electron under the action of electromagnetic
radiation with a specified frequency ω. It is convenient to express the
value σ(ω) in terms of the spectral function of dipole excitations g(ω):19

σ ω( ) � 2π2a0
c

g ω( ), (2.1)

where a0 � 0.529 3 10−8 cm is the Bohr radius and c is the speed of
light (note that the speed of light in atomic units is c/V0 � 1/α ≈ 137,
where V0 ≅ 2.18 · 108 cm/s is the velocity of an electron in the first
Bohr orbit in a hydrogen atom, i.e., an atomic unit of velocity, and
α� e2/Zc� 1/137.036 is the fine structure constant). The function g(ω)
is very convenient, because it satisfies the sum rule

∫g ω( )dω � Nn, (2.2)

where Nn is the total number of electrons in an atom in shell n.
Besides, the spectral function g(ω) also satisfies the equation

g ω( ) ��
j
fijδ ω−ωij( ), (2.3)

where fij is the strength of an oscillator for the transition i→ j andωij is
the eigenfrequency of this transition. Equations (2.1)–(2.3) apply not
only to photoabsorption but also to photoionization. In the case of
photoionization, the summation in Eq. (2.3) is replaced by an in-
tegration over states of the continuous spectrum, the integrand
being a differential oscillator strength for transition to the continuum,
df/dε, where ε is the energy of a state of the continuous spectrum of an
electron. The differential oscillator strength is expressed in terms of
the matrix element diε of a transition dipole moment operator for
transitions to the continuum in the same manner as for transitions to
the discrete spectrum:

df

dε
� 2ω ∣diε ∣ 2

3 e2 a20
, (2.4)

where e is the elementary charge. The oscillator strength of such
transitions has to be divided by the energy interval from the given level
to the nearest energy level. It can be shown that in this case the
following relation is valid:20–22

lim
n′ →∞

2π2

c
a20 2Ry

fn l, n′ l′
En′+1 l′ −En′ l′

� σnl, ε l′ Inl( ). (2.5)

This means that the normalized oscillator strength density for
infinitely large principal quantum numbers goes over to the
threshold value of the partial (corresponding to a given value of
orbital quantum number l′) cross-section of photoionization of an
electron subshell nl. The limiting transition (2.5) demonstrates a
smooth conjugation of optical characteristics of discrete and
continuous spectra.

The most general expression for the cross-section for photo-
ionization of an electron subshell in the one-electron approximation
(i.e., with interelectron correlations neglected) has the form

σnl ω( ) � 4 π2 Nnl

3 e2 a0 ω c 2l + 1( ) [∣dnl, ε l+1( ) ∣2 + ∣dnl, ε l− 1( ) ∣2], (2.6)

whereNnl is the number of equivalent electrons, i.e., electrons with the
same values of principal and orbital quantum numbers. This ex-
pression involves the matrix elements of a dipole moment operator
for transitions to states of the continuous spectrum with orbital
quantum numbers allowed by selection rules. These matrix elements
can be expressed in terms of radial wave functions of the initial,Rnl(r),
and final, Rel′ r( ), states as follows:

dnl,εl′ �
e V0

a0

��������������
2l + 1( ) 2l′ + 1( )√ l 1 l′

0 0 0
⎛⎝ ⎞⎠

3∫∞
0

Rnl r( ) r Rεl′ r( ) r2 dr, (2.7)

where l 1 l′
0 0 0

( ) is the so-called 3j symbol, which results from

integration with respect to angular variables in the definition of the
matrix element of the dipole moment. The 3j symbol describes the
selection rules for dipole radiation, according to which l′ � l ± 1.
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Naturally, in the case l � 0, there is one allowed value of a quantum
number of an orbital moment in the final state: l′ � 1. As a rule, the
main contribution to the photoionization cross-section is made by a
transition with increasing quantum number of an orbital moment,
l→ l + 1. Exceptions to this rule occur if for some specific reasons the
matrix element dnl, n′ l+1 is small or goes to zero. On the other hand, for
the angular distribution of ionized electrons (which we do not
consider here), the transition l → l − 1 can play an important role.

B. Born approximation

For small values of the Born parameter ζ � z/ka0 � ze2/ZV ≪ 1
(where z is the charge of the ion, the spectroscopic symbol), the influence
of the atomic core on themotion of an ionized electron canbe considered
to be a small perturbation. This is the case for high velocities and low
nuclear charges. In this case, plane waves corresponding to free motion
canbeused as thewave functions of ionized electrons in the calculationof
thematrix elements dnl,εl+1 appearing in the general formula (2.6) for the
photoionization cross-section. Then, the following expression can be
obtained for the photoionization cross-section of an atomic subshell:

σnl ω( ) � 8 π2

3c
Nnl a

2
0
Ry

Zω

p ω( )
Z

( )3∣∣∣∣∣∣∣∣gnl
p ω( )
Z

( )∣∣∣∣∣∣∣∣2, (2.8)

where p ω( ) � �����������
2m Zω− Inl( )√

is the momentum of the ionized
electron, Inl is the ionization potential of the electron subshell,

gnl k( ) �
��
2
π

√ ∫∞
0

jl kr( )Rnl r( )r2dr

is the Fourier transform of the radial wave function of the initial state
of the atom, Rnl(r) is the radial wave function of the initial state of an

atomic electron normalized according to ∫∞
0

∣Rnl r( ) ∣2r2dr � 1, and

jl(kr) is the spherical Bessel function of order l.
To clarify the notation, we give for reference several

spherical Bessel functions: j0(x) � sin x/x, j1(x) � sin x/x2 − cos x/x,
j2(x)�(3x−3− x−1)sin x− 3cos x/x2. Spherical Bessel functions describe
the radial dependence of a spherical wave with a specified value of the
orbital quantum number l.

In the case of ground-state photoionization of a hydrogen atom,
we have

R10 r( ) � 2/ ��
a30

√( ) exp −r/aB( ), g10 k( )

�
��
2
π

√
4a3/20

1 + k2a20( )2, Nnl � 1, Inl � Ry.

Substituting these expressions into Eq. (2.8), we find the fol-
lowing expression for the photoionization cross-section of a hydrogen
atom in the Born approximation:

σ B( )
1s ω( ) � 28 π

3c
a20

Ry

Zω

p ω( ) a0/Z( )3
1 + p ω( ) a0/Z( )2[ ]4. (2.9)

A plot of the function σ B( )
1s ω( ) is presented in Fig. 1 as the dash-dotted

curve.

A characteristic feature of the Born cross-section can be seen in
Fig. 1: it goes to zero at the threshold, in contrast to the exact
Sommerfeld cross-section and the approximate Kramers cross-
section, both of which have their maximum values at the thresh-
old. This is connected with the fact that the Born approximation does
not take into account nuclear attraction, which increases the value of
the cross-section. On the other hand, the function (2.9) has the correct
high-frequency asymptotic behavior σ B( )

1s Zω> >Ry( )}ω−7/2, since in
the mode of high photon energies, an ionized electron can be con-
sidered to be free, which corresponds to the condition of applicability
of the Born approximation. Nevertheless, the ratio of the Born cross-
section to the exact cross-section atZω� 100 eV is 2.1, atZω� 1 keV, it
is 1.38, and only at Zω � 10 keV is this ratio equal to 1.12; i.e., the
convergence is rather slow. It is interesting to note that for not too
high photon energies, the classical Kramers photoionization cross-
section (see the Sec. VI below) for a hydrogen atom describes the real
situation better than the Born cross-section.

C. Local plasma frequency model

So far, the photoionization cross-section has been calculated
with neglect of interelectron interaction; i.e., it has been assumed that
photon absorption occurs as a result of interaction of an electro-
magnetic field with individual electrons, the contributions of which
are additively summed, giving the total cross-section. There is a rather
simple alternative approach to the description of atomic photoion-
ization based on purely classical considerations. This is the local
plasma frequency model or the Brandt–Lundqvist approximation.23

Within the framework of this approach, an atom is approximated by
an inhomogeneous distribution of electron density with concentra-
tion n(r) (plus nucleus). Each spatial point corresponds to its own
local plasma frequency ωp r( ) � ����������

4π e2n r( )/m√
, and interaction of an

external electromagnetic field of frequency ωwith atomic electrons is
defined by the plasma resonance condition [in atomic units, i.e., with
ω in units of 2Ry and n(r) in units of 1/a30]

FIG. 1. The Sommerfeld, Kramers, and Born cross-sections for photoionization of
the ground state of a hydrogen atom and the cross-section in the Rost approximation
vs the photon energy. The cross-sections are in units of Å2 � 10−16 cm2.
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ω � ωp r( ) � �������
4 π n r( )√

. (2.10)

It follows from this equation that absorption of electromagnetic field
energy by atomic electrons occurs at those distances from a nucleus
where the local plasma frequency coincides with the ionizing radi-
ation frequency. Thismodel results in the following simple expression
for the spectral function:

g ω( ) � ∫d3r n r( ) δ ω−ωp r( )( ). (2.11)

It is easy to see that the spectral function (2.11) satisfies the sum rule
(2.2). For the photoionization cross-section, according to (2.1), we
have

σ ω( ) � 2 π2

c
a0 ∫d3r n r( ) δ ω−ωp r( )( ). (2.12)

The presence of the delta function in Eq. (2.12) allows easy integration
with respect to spatial variables. As a result, we obtain the so-called
Brandt–Lundqvist approximation for the photoionization cross-
section:

σB−Lph ω( ) � 4 π2 ω

c
r2ω

n rω( )
∣n′ rω( )∣ , (2.13)

where rω is the solution of Eq. (2.10). This value corresponds to the
radial distance (from the nucleus) of the plasma resonance, and the
prime denotes differentiation with respect to the radius. Thus, within
the framework of the model, the photoionization cross-section is
defined only by the distribution of the electron density n(r). For this
last value, it is convenient to use the statistical model of an atom, in
which n r( ) � Z2/( a3B)f x � r/( rTF), where f(x) is a universal func-
tion of the reduced distance x � r/rTF, Z is the nuclear charge, and
rTF � b a0/Z1/3 is the Thomas–Fermi radius, with b ≅ 0.8853.
Substituting this expression for the electron density into Eq. (2.13),
we find

σB−Lph ω( ) � s ν � Zω

2ZRy
( ) � 9 π4 ν

32 c
x2
ν

f xν( )
∣f′ xν( ) ∣ a20, (2.14)

where the reduced frequency ]� Zω/(2ZRy) has been introduced, and
x] is the solution of the equation ν � �������

4 π f x( )√
that is a consequence

of Eq. (2.10).
As can be seen from Eq. (2.14), the photoionization cross-

section in the Brandt–Lundqvist approximation is found to be a
universal function, that is to say, it is independent of nuclear charge
but a function of the reduced frequency: s(]). Equation (2.14)
reveals the corresponding scaling law for the cross-section with
respect to the variable ]. The universal function s(]) is defined by
the type of statistical model of the atom, i.e., by the dependence of
f(x). Figure 2 shows the photoionization cross-section of a krypton
atom calculated within the framework of the classical local plasma
model (2.14) employing the Thomas–Fermi electron density
(dotted blue curve).

The main advantages of the Brandt–Lundqvist approximation
are its simplicity, clarity, and universality. However, it gives a poor
description of the photoionization process in spectral intervals in
the vicinity of thresholds of ionization of electron subshells, as can
be seen from Fig. 2. In the original work of Brandt and Lundqvist,23

it was noted that the local plasma model is not appropriate for

describing the physics of electromagnetic field photoabsorption by
an atom throughout the frequency range, but only at frequencies
ω ≈ ZRy/Z (Ry � 13.6), at which collective interactions dominate
over one-particle interactions. For such frequencies, the distance
from the nucleus at which the plasma resonance condition (2.10) is
satisfied (in the Thomas–Fermi model), coincides with the
Thomas–Fermi radius, i.e., it is equal to the distance at which the
electron density is maximum. Therefore the assumption of dom-
inance of collective phenomena in the photoionization at fre-
quencies ω ≈ ZRy/Z seems to be reasonable, at least at a qualitative
level.

The use of the exponential screening model for the normalized
function of the electron density f(x � r/rTF), i.e.,

fexp x( ) � 128
9 π3

e−2 x, (2.15)

allows us to obtain a simple analytical expression for the photo-
ionization cross-section. In this case, the transcendental Eq. (2.10) is
easily solved, and, with the use of Eq. (2.14), we obtain

σB−Lph ω � 2ZRy/Z( ) ν( ) � 9 π4 a20 ν
64 c

ln2
16

�
2

√
3 π ν( ), ν≤ 16

�
2

√
3 π

≅2.4.

(2.16)

A characteristic feature of the cross-section (2.16) is the existence of a
“cutoff frequency,”which is connectedwith the limited radial electron
density near the nucleus in the model (2.15). Therefore, there exist a
radiation frequency at which the plasma resonance condition is not
satisfied. Another characteristic feature of the photoionization cross-
section calculated using the function (2.15) is the presence of a
pronounced maximum at Zω(exp)

max ≅ 8.8Z.
The atomic photoionization cross-section calculated within the

framework of the Brandt–Lundqvist approximation (2.14) with
different statistical atomic models is presented in Fig. 3.

FIG. 2. Photoionization cross-section (units of Mb� 10−21 cm2) of a krypton atom vs
photon energy: the solid red curve is for the standard hydrogen-like approximation
and the dotted blue curve is for the local plasma model with electron density
according to the Thomas–Fermi model.
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D. Mixed quantum–classical approach

Let us consider a simple model of atomic photoionization that
admits an analytical representation of the process cross-section,
known as the Rost hybrid method.24 From a formal point of view,
this approach is based on the following approximate operator
equation:

exp −
i Ĥ0 + Δ1( )t

Z

⎧⎨⎩ ⎫⎬⎭ exp
i Ĥ0t

Z
{ } ≈ exp −

iΔ1 t

Z
( ),Δ1 � e2 a0

r2
,

(2.17)

where H0 is the unperturbed Hamiltonian of the atom. Hence, the
cross-section is given by the following expression:

σph ω( ) ≈ 2 πZ2

3 · c ω ∫+∞
−∞

dt 〈ψ| exp −iΔ1 t/Z( )|ψ〉 eiωt. (2.18)

The representation of the cross-section through Eq. (2.18) is called the
“hybrid” approximation: it is quantum mechanical in its use of the
general operator approach and at the same time has classical features
since the approximate commutation of operator exponents in Eq.
(2.17) is used. It should be noted that Eq. (2.18) can be rewritten in
terms of the electron density if the following replacement is made:

∣ψ r( )∣2 → 4πr2 n r( ). (2.19)

After integration with respect to time, the remaining integral (due to
the presence of the delta function) can be represented as

σph ω( ) � 8π3Z2

3c
a50

2Ry
Zω
( )7/2 n r �

�����
a0V0

ω

√( ). (2.20)

In particular, the hydrogen-like high-frequency asymptotic
behavior of the photoionization cross-section follows from Eq. (2.20)
if n(r→ 0)→ const. The dependence (2.20) is presented in Fig. 1 as a
dotted curve.

Thus, as in the Brandt–Lundqvist approximation, the photo-
ionization cross-section in the Rost hybrid approximation is found to
be an electron density functional. However, in this case, the char-
acteristic distance of the radiative process rω is not defined by the
plasma resonance condition (2.10), but by the difference of the atomic
HamiltoniansHl with orbital quantum numbers differing (according
to the dipole selection rules) by 1:

Zω � H1 r( )−H0 r( ). (2.21)

Equation (2.21) follows immediately fromEq. (2.17) in view of energy
conservation. Based on Eq. (2.21), it is possible to give a physical
interpretation of the Rost approximation. From this equation, it
follows that photon absorption occurs with a fixed electron coor-
dinate as in the Born–Oppenheimer approximation, where the values
of the coordinates of molecular nuclei do not change during an
electron transition. It should be noted that Eq. (2.17) is just a
mathematical expression of this fact. Thus, the Rost hybrid ap-
proximation can be considered as a generalization of the adiabatic
principle to the case of electron transitions in atoms.

It should be emphasized that, in contrast to the Brandt–
Lundqvist approximation, the Rostmodel does not fulfill the sum rule
(2.2) for the photoabsorption cross-section. This hints at the in-
consistency of the hybrid approach when used in the derivation of the
expression for the photoionization cross-section.

III. HYDROGEN-LIKE APPROXIMATION AND SCALING
RELATIONS

As was shown for the first time by Sommerfeld,25 the total
(integrated with respect to the electron escape angle) photoionization
cross-section for the ground 1s state of a hydrogen-like ion is

σH−like
ph 1s ω( ) � 29 π2

3Z2 c

I1s
Zω
( )4a20 exp −4 ζ arcctgζ( )

1− exp −2 π ζ( ) , (3.1)

where ω is the ionizing radiation frequency, Z is the nuclear charge,
I1s � Z2Ry is the ionization potential of the 1s state (Ry � 13.6 eV),
p � �����������

2m Zω− I1s( )√
is the momentum of the ionized electron, and

ζ � Zme2/pZ is the so-called Born parameter. The Born parameter is a
dimensionless quantity characterizing the force of interaction between
an electron and a charged particle. This parameter appears in electron
scattering theory and is usually written in terms of the electron velocity:
ζ � Ze2/ZV. The dependence of the Sommerfeld photoionization cross-
section (3.1) on the photon energy is presented in Fig. 1 (solid curve).

It should be noted that photoionization is a first-order process,
with the smallness parameter being the electromagnetic interaction
constant α. This manifests itself in the presence of the speed of light
(as represented by the number 137) to the first power in the de-
nominator in Eq. (3.1).

In the vicinity of the photoionization threshold, when p → 0,
ζ → ∞, we obtain from Eq. (3.1) the following approximate ex-
pression for the photoionization cross-section:

σ1s ω( ) ≈ 29π2 a20
3 e4 Z2 c

1−
8
3

Zω− I1s( )
I1s

( ) ≈
0.23 a20
Z2

1−
8
3

Zω− I1s( )
I1s

( ),
(3.2)

where e here is the base of natural logarithms (not to be confused with
the elementary charge). Thus, the photoionization cross-section for a

FIG. 3. Photoionization cross-sections in the Brandt–Lundqvist approximation
employing different statistical atomic models: (1) Thomas–Fermi; (2) Lenz–Jensen;
(3) exponential screening. Cross-sections in units of Mb � 10−21 cm2 are plotted vs
the scaled photon energy.
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hydrogen atom (Z � 1) at the threshold (Zω � Ry) is equal to 0.063 Å2

or 6.3 Mb [1 megabarn (Mb) � 10−18 cm2].
An important feature of the photoionization of hydrogen-like

atoms follows from Eqs. (3.1) and (3.2): the maximum value of
the cross-section is achieved at threshold, i.e., at the minimum
radiation frequency at which photoionization is still possible. For
higher frequencies, the cross-section decreases monotonically.
This property arises from the fact that an ionized electron ex-
periences Coulomb attraction by the nucleus, which increases the
cross-section.

It follows from Eq. (3.2) that the cross-section for photoioni-
zation of the ground state of a hydrogen-like ion decreases at
threshold in inverse proportion to the square of the nuclear charge.
This behavior of the cross-section has a simple qualitative inter-
pretation: with increasing nuclear charge, the radius of the ground
state of a hydrogen-like ion decreases as r1s} Z−1, from which (under
the assumption that σ1s}r21s) there follows a threshold dependence of
the photoionization cross-section under consideration that can also
be represented as σthres1s }1/I1s. Hence, it follows that the threshold
value of the photoionization cross-section for ns states (with another
principal quantum number n) can be represented as

σthresns � I1s/Ins( ) σthres1s . (3.3)

Thus, the threshold value of the photoionization cross-section in-
creases with increasing principal quantum number. Curiously, this
relation is satisfied by experimental cross-sections even in the case of
non-hydrogen-like atoms. For example, for an argon atom, we have
I1s:I2s:I3s � 150:10:1, while the ratio of experimental threshold cross-
sections for these shells is 300:30:1

In the high-frequency mode Zω≫ I1s, we obtain from Eq. (3.1)
that

σ1s ω( ) ≈ 28π
3

a20
Z2 c

I1s
Zω
( )7/2 1− π

���
I1s
Zω

√[ ]. (3.4)

Equation (3.4) reflects the well-known asymptotic decrease in the
hydrogen-like photoionization cross-section with increasing fre-
quency: ω−7/2. It should be emphasized that the photoionization
cross-section (3.1) goes to its asymptotic behavior (3.4) only at rather
high frequencies, namely, at about ω> 40 I1s/Z, since the expansion
parameter (−2πζ) in the exponential in Eq. (3.1) becomes much less
than unity only at such high frequencies.

For the photoionization of nl subshells (with l ≠ 0), the pho-
toionization cross-section also decreases monotonically with in-
creasing frequency, and for ω ≫ Inl/Z we have

σnl ω( )}1/ωl+7/2, (3.5)

i.e., the cross-section decreases more rapidly.
As discussed above in connection with the Sommerfeld formula

(3.1), there follow some characteristic features of the photoionization
cross-sections of a hydrogen-like ion: a maximum at threshold and a
monotonic decrease with increasing frequency. These characteristic
features are, generally speaking, violated in the case of multielectron
atoms. Nevertheless, the hydrogen-like formula for the photoioni-
zation cross-section is a starting point for construction of an
approximate order-of-magnitude description. For example, if the
high-frequency dependence (3.5) is employed from the threshold and
is combined with the sum rule

c

2π2 a0 V0
∫∞
Inl

σnl ω( ) dω � Nnl,

then we obtain the following photoionization cross-section in the
hydrogen-like approximation:

σnl ω( ) � 4π2

c
a20Nnl

5
2
+ l( ) I5/2+lnl Ry

Zω( )7/2+l.
(3.6)

The cross-section (3.6) applied to the 1s electron gives a 3.2-fold
excess over the exact value near threshold, and far from threshold an
underestimate by a factor of 2.7. Thus, Eq. (3.6) defines the cross-
section within an order of magnitude (in the hydrogen-like
approximation).

Figure 2 also shows the photoionization cross-section of a
krypton atom calculated within the framework of the quantum
hydrogen-like approximation (3.6) (solid curve). It can be seen that
the first dependence is a sawtooth curve with jumps at frequencies
corresponding to the ionization potentials of electron subshells. The
value of a jump decreases with increasing potential of subshell
ionization according to Eq. (3.3). By contrast, the photoionization
cross-section of an atom in the local plasma model (for the
Thomas–Fermi electron density) is a smooth monotonically de-
creasing curve that describes in a smoothmanner the quantum jumps
of the hydrogen-like approximation.

For semiquantitative characterization of radiative phenomena,
simple formulas obtained by Kramers within the framework of
classical physics are often used.26 They describe cross-sections for
radiative processes occurring during electron scattering in the field
of a point charge. These formulas are valid for values of the Born
parameter that are not small,

ζ � ze2/ZV≥ 1, (3.7)

i.e., for large charge numbers and low electron velocities. In this
case, the electronmotion is quasiclassical and can be described to a
good degree of accuracy as motion along a classical trajectory. We
note that the relation (3.7) is equivalent to the fact that the de
Broglie wavelength is larger than the distance between Coulomb
particles for a given energy. Within the framework of the Kramers
approach for the photoionization cross-section of an atomic
subshell with quantum numbers nl, the following expression can
be obtained:

σ Kr( )
nl ω( ) � 64 π

3
�
3

√ Nnl
a20
c Z2

���
Ry

Inl

√
Inl
Zω
( )3. (3.8)

Hence, this expression corresponds to the cross-section for photo-
ionization of a hydrogen atom in the ground state if it is assumed that
Z � Nnl � 1 and Inl � Ry. These results are represented by the dashed
curve in Fig. 1, which demonstrates that, despite its simplicity, the
Kramers formula adequately describes the photoionization cross-
section of a hydrogen atom. The greatest discrepancy with the exact
cross-section is at threshold. The Kramers formula overestimates the
Sommerfeld threshold value of the cross-section by about 30%. In the
high-frequency mode, Eq. (3.8) gives different asymptotic behavior
from the Sommerfeld formula (3.1): ω−3 instead of ω−3.5. However,
since the cross-section goes to its high-frequency asymptotic form
only very far from threshold (more than ten times), this distinction
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has little effect in the actual region of photon energies, where the
cross-section is high.

IV. GENERALIZED SCALED PHOTOIONIZATION
MODEL FOR NL-RESOLVED PHOTOIONIZATION
CROSS-SECTIONS

Quantum mechanical numerical calculations of the photoion-
ization cross-sections of different subshells have been carried out with
Vainshtein’s ATOM code.27,28 In this code, the wave function of an
optical electron is calculated using the scaled central field U(r/ζ). The
scaling parameter ζ is defined by the condition that the energy
computed as an eigenvalue of the radial equation matches the ex-
perimental value of this electron ionization energy. Such a semi-
empirical approach allows implicit account to be taken of higher-
order effects (in particular the configuration interaction). For more
details, see Refs. 27 and 28.

Calculation of collisional characteristics with the ATOM code
enables a Z-scaled and energy-threshold-scaled representation of
electron–atom/ion collisional cross-sections. This particular double
scaling allow us to establish a generalized scaled photoionization
model (GSPM) and a cross-section formula that can also be applied to
inner-shell photoionization and non-hydrogen-like atoms and ions:

σphin0 l0
� πa20
Z2
eff

· m

2l0 + 1
· P1 · u + P2

u + P3
· 1

u + P4( )7/2+l0 , (4.1)

u � E−En0l0

~Z
2 · Ry

, (4.2)

Zeff � n0

����
En0l0

Ry

√
, (4.3)

z � Zn −Nbound + 1, (4.4)

where

~Z � Zeff + Zeff − z( ) (4.5)

for single electrons in the outer shell n0l0 and

~Z � Zn −Nbound +Nnl≥ n0 l0 (4.6)

for inner-shell or equivalent electrons in the outer shell n0l0 [note that
application of Eq. (4.6) requires at least two different subshells]. a0 is
the Bohr radius (πa20 � 8.79310−17 cm2), m is the number of
equivalent electrons in the subshell n0l0, n0 and l0 are the principal and
orbital quantum number of the optical electrons, respectively, Nbound

is the number of bound electrons,Nnl≥ n0 l0 is the number of electrons
in subshells nl higher or equal than the subshell n0l0, Ry � 13.6057 eV,
Zn is the nuclear charge, z is the spectroscopic symbol, En0 l0 is the
ionization potential, and P1,P2,P3,P4 are generalized fitting param-
eters that are given in Table I.

Formulas (4.1)–(4.6) are particularly advantageous. First, for
H-like ions, they show the right high-energy asymptotic behavior,
namely,

σphin0l0
� πa20
Z2
eff

· m

2l0 + 1
· P1 · u + P2

u + P3
· 1

u + P4( )7/2+l0 →
u→∞

3
πa20
Z2
eff

· m

2l0 + 1
· P1 · 1

E7/2+l0 .
(4.7)

Second, the particular functional form of the fraction (u+ P2)/(u+ P3)
with fitting parameters P2 and P3 also allows us to obtain threshold
and near-threshold behavior that is independent of the energy at
threshold, namely,

σphin0l0
→
u→ 0

πa20
Z2
eff

· m

2l0 + 1
· P1 · P2

P3
· 1

P7/2+l0
4

� const. (4.8)

Therefore, in principle, there are only two independent fitting pa-
rameters, corresponding to the high-energy asymptote and the
threshold value. However, we find it more advantageous to allow
variation of the four fitting parameters to achieve an overall improved
approximation to the numerical cross-section values with the same
formula (note that if the genetic algorithm finds no advantage in the
employment of four different fitting parameters, P2 and P4 have
almost identical values; see Table I). This is demonstrated in Fig. 4 via
the photoionization cross-sections of H-like neon for n0l0 � 4s, 4p, 4d,
4f. Comparison of Eqs. (4.1) –(4.6) (solid curves) with the quantum
mechanical numerical results (symbols) shows excellent agreement
for all orbital quantumnumbers over the energy range from threshold
until asymptotic behavior.

Let us now consider a few numerical examples in order to
demonstrate the numerical application of Eqs. (4.1)–(4.4) and (4.6).

(1) The threshold cross-section of hydrogen, σphi1s u � 0( ). From
Eq. (4.8) and the fitting parameters for the 1s state in Table I,
it follows with l0 � 0, m � 1, and Zeff � 1 that
σphi1s (u � 0)GSPM ≈ 6.4310−18 cm2. This is in excellent agreement
with the exact value of the Sommerfeld formula (3.1), which gives
σphi1s (Zω � Ry)Sommerfeld ≈ 6.3310−18 cm2.

(2) Photoionization from the 2p shell of H-like helium, i.e., the tran-
sition 2p+ ℏω→ nuc + e at a photon energy of 122 eV. FromZeff� 2,

TABLE I. Numerical quantum mechanical calculations of the photoionization cross-
sections of H-like ions from the n0l0 subshells. For H-like ions, ~Z � Zeff � Zn. Fitting
parameters are generally accurate within 20% in the wide energy range from
10−3 < u < 32.

n0l0 P1 P2 P3 P4

1s 4.667 3 10−1 2.724 3 10 9.458 3 10 1.189 3 10
2s 5.711 3 10−2 6.861 3 10−1 7.768 3 10 3.644 3 10−1

2p 8.261 3 10−2 1.843 3 10−1 7.340 3 100 2.580 3 10−1

3s 1.682 3 10−2 1.436 3 10−1 7.356 3 100 1.436 3 10−1

3p 2.751 3 10−2 1.742 3 10−1 7.162 3 100 1.742 3 10−1

3d 3.788 3 10−3 1.566 3 10−1 7.880 3 100 1.566 3 10−1

4s 7.096 3 10−3 8.799 3 10−2 7.308 3 100 8.799 3 10−2

4p 1.493 3 10−2 1.197 3 10−1 1.027 3 101 1.197 3 10−1

4d 1.769 3 10−3 1.205 3 10−1 6.346 3 100 1.205 3 10−1

4f 1.092 3 10−4 1.055 3 10−1 9.231 3 100 1.055 3 10−1

5s 3.956 3 10−3 5.846 3 10−2 8.651 3 100 5.846 3 10−2
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u � 2, l0 � 1, m � 1, and the fitting parameters for the 2p state in
Table I, it follows that σphi2p (E � 122 eV)GSPM ≈ 3.7310−21 cm2,
and the exact quantum mechanical numerical result is likewise
σphi2p (E � 122 eV)ATOM ≈ 3.7310−21 cm2.

The fitting parameters can also be used to estimate the pho-
toionization cross-section of non-H-like ions in the framework of the
H-like approximation with effective charges.

(3) Photoionization of Li-like aluminum: the transition 1s22s + ℏω
→ 1s2 + e at a photon energy of 7020 eV. Here, E2s ≈ 442 eV, from
which it follows that Zeff ≈ 11.4. Because the considered 2s electron
corresponds to photoionization of a single outer electron, Eq. (4.4)
applies, and ~Z � Zeff + Zeff − z( ) � 11.4 + 11.4− 11( ) � 11.8 and
u� 3.47.With l0� 0andm� 1and thefittingparameters for the2s state
in Table I, it follows that σphi2s (E � 7020 eV)GSPM ≈ 1.3310−22 cm2.
The quantum mechanical numerical result is
σphi2s (E � 7020 eV)ATOM ≈ 1.3310−22 cm2.

(4) Li-like aluminum: the transition 1s23d + ℏω → 1s2 + e at a photon
energy of 1010 eV. Here, E3d � 183 eV, from which it follows that Zeff
≈ 11.0. Because the considered “d electron” corresponds to the
photoionization of a single outer electron, ~Z � Zeff + Zeff − z( ) �
11 + 11− 11( ) � 11 and u � 0.5.With l0 � 2 andm � 1 and the fitting
parameters for the “d state” in Table I, it follows that
σphi3d (E � 1010 eV)GSPM ≈ 4.3310−22 cm2. The quantum mechani-
cal numerical result is σphi3d (E � 1010 eV)ATOM ≈ 4.4310−22 cm2.

(5) Let us now consider a more complicated ground state and the
transition 1s22s22p1 + ℏω → 1s22s2 + e in B-like neon at a photon
energy of 2117 eV:E2p≈ 157.9 eV, fromwhich it follows thatZeff≈ 6.81,
~Z � 6.81 + 6.81− 6( ) � 7.62 and u ≈ 2.48.With l0 � 1 andm � 1 and
the fitting parameters for the 2p state in Table I, it follows that
σphi2p (E � 2117 eV)GSPM ≈ 1.5310−22 cm2.Thequantummechanical
numerical result is σphi2p (E � 2117 eV)ATOM ≈ 2.3310−22 cm2.

These examples have a general character: the fitting formulas
(4.1)–(4.6) are very precise for H-like and close to H-like ions. For
ground states of non-H-like ions, specific numerical calculations are
usually required to achieve high precision. However, not only do Eqs.
(4.1)–(4.6) incorporate the standard H-like approximations with a

non-H-like ionization energy entering via an effective charge Zeff
(i.e., σ}1/Z2

eff), but Eqs. (4.2)–(4.6) also introduce a shifted energy
scale via the effective charge ~Z. This considerably improves the
precision, even for complex non-H-like ground states. The general
precision is difficult to estimate, but may be about a factor of 2 when
Eqs. (4.2)–(4.6) are used. By contrast, the straightforward H-like
approximation (i.e., Zeff � ~Z) can be used only for an order-of-
magnitude estimate of the cross-section. The overall precision of the
~Z-scaled energy scale is demonstrated in Fig. 5, where the photo-
ionization cross-section of the B-like neon ground state fromExample
5 is shownover a large energy interval from threshold to high energies.
As can be seen, the ~Z-scaled energy scale results in a high precision of
about a factor of 2 over the whole range of energies.

V. INNER-SHELL PROCESSES AND EQUIVALENT
ELECTRONS

Stimulated by the continuing developments in XFEL technology
and its rapidly growing applications in biology, atomic physics, solid
state physics, and plasma physics photoionization from inner shells is
of particular interest and importance. We are therefore seeking to
extend the generalized scaling approach of Eqs. (4.1)–(4.4) and (4.6)
to inner-shell processes. For these purpose, we replace the scaled
charge ~Z of Eq. (4.5) by that of Eq. (4.6).

Let us demonstrate this ~Z scaling approach via application of the
same parameters as in Table I to more complex cases, namely, non-
hydrogen-like ions and photoionization from inner shells and
equivalent outer-shell electrons in ground states. To demonstrate the
use of the relevant formulas, we consider some further examples.

(6) Inner-shell photoionization from the K-shell of B-like neon at a
photon energy of 2000 eV. The ionization potential for the transition
1s22s22p1 + Zω → 1s12s22p1 + e is E1s � 1051 eV, from which it
follows that Zeff ≈ 8.78. Because the ionization of the 1s electron
corresponds to inner-shell ionization, Zn � 10, Nbound � 5,
Nnl≥ n0l0 1s( ) � 5 [Eq. (4.6) applies], we have ~Z � 10 − 5 + 5 � 10,
from which it follows that u � 0.70. With l0 � 0 and m � 2 and the
fitting-parameters for the 1s state in Table I, we obtain

FIG. 5. Comparison of photoionization cross-sections vs photon energy obtained
from the quantum mechanical numerical results of the ATOM code with the GSPM
[Eqs. (4.1)–(4.6)] for the photoionization cross-section of the B-like neon ground
state. The energy at threshold is 158 eV.

FIG. 4. Comparison of photoionization cross-sections vs photon energy obtained
from the quantum mechanical numerical results of the ATOM code with the
generalized scaled formulas of Eqs. (4.1)–(4.6) for H-like neon and the 4s, 4p,
4d, and 4f states. The energy at threshold is 85 eV.
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σphi1s (E � 2000 eV)GSPM ≈ 3.9310−20 cm2. The quantum mechani-
cal numerical result is σphi1s (E � 2000 eV)ATOM ≈ 3.8310−20 cm2.

(7) We now consider the inner-shell photoionization from the 2s shell of
B-like neon, with the transition 1s22s22p1 + Zω→ 1s22s12p1 + e
for a photon energy of 2132 eV. Here, E2s � 173 eV, from which it
follows that Zeff ≈ 7.13, Nnl≥ n0 l0 2s( ) � 3 [Eq. (4.6) applies], and
~Z � 10 − 5 + 3 � 8, giving u ≈ 2.25. With l0 � 0,m � 2 and the fitting
parameters for the 2s state in Table I, it follows that
σphi2s (E � 2132 eV)GSPM ≈ 2.0310−21 cm2. The quantum mechani-
cal numerical result is σphi2s (E � 2132 eV)ATOM ≈ 2.3310−21 cm2.

(8) Finally, we consider the photoionization from shells with equivalent
electrons [the case nl � n0l0 in Eq. (4.6)] in the ground-state
configuration and take as an example photoionization from the
neutral Ne ground state 1s22s22p6 + Zω→ 1s22s22p5 + e for a photon
energy of 76 eV. Here, E2p � 21.57 eV, from which it follows that
Zeff ≈ 2.52. Because the equality holds inNnl≥ n0 l0, Eq. (4.6) applies,
i.e., we have ~Z � 10− 10 + 6 � 6 andu≈ 0.11.With l0� 1,m� 6, and
the fitting parameters for the 2p state in Table I, it follows that
σphi2p (E � 76 eV)GSPM ≈ 8.1310−18 cm2. The quantum mechanical
numerical result is σphi2p (E � 76 eV)ATOM ≈ 1.1310−17 cm2.

Figures 6 and 7 demonstrate that the generalized energy scaling
via ~Z from Eq. (4.5) is effective over a very large energy interval.
Figure 6 shows a comparison of the photoionization cross-sections for
the inner-shell photoionization of B-like neon, while Fig. 7 shows the
cross-section for photoionization from the ground state of neutral
neon. From threshold to the asymptotic region, a precision of about a
factor of 2 is achieved with the same fitting parameters of Table I that
have been obtained from the scaled hydrogenic quantummechanical
numerical calculations.

The general precision for inner-shell and equivalent outer-shell
electron photoionization is difficult to estimate, although Eqs.
(4.1)–(4.3), (4.5), and (4.6) can estimate inner-shell photoionization
cross-sections to within a factor of 2. However, they might only be
precise to within an order of magnitude in much more complex cases
(in particular for the last outer shell). Let us finally comment qual-
itatively on the impact of a dense plasma environment. Essentially two
effects are then of importance for photoionization cross-sections: (i)

the ionization potential depression that has a direct impact on the
ionization potential to be used in Eqs. (4.1)–(4.5); (ii) the change in
the wavefunction along the radius. Although these two effects are
related, it is useful to separate them. The ionization potential de-
pression has been investigated on the basis of self-consistent finite-
temperature atomic physicsmodels (where the depression is obtained
from the change in the wavefunction), and analytical approximations
have been derived for the dependence of the ionization potential
depression ΔEplasma on the principal and orbital quantum numbers;
for more details see Ref. 29. A simple approximation that includes the
ionization potential depression is therefore to change the free-atom
ionization potentialEn0 l0 of Eq. (4.2) toEn0 l0 −ΔEplasma. The inclusion
of the effect of the wavefunction change is more complex: it is related
in some way to the scaling charge ~Z from Eq. (4.5) or (4.6) that
changes the energy scale u of Eq. (4.2). At present, it remains an open
question whether the scaling charge ~Z is still appropriate to ap-
proximate dense plasma effects.

VI. DISCUSSION AND APPLICATIONS

Figure 8 compares our quantum mechanical calculations per-
formed with the ATOM code, the present GSPM [Eqs. (4.1)–(4.5)],
the reference data from Ref. 30, and the experimental data presented
in Ref. 31 for neutral helium in the ground state 1s2 1S0. The results of
the ATOMcalculations are in very good agreement with the reference
data over a large interval. The threshold value for the ATOM

calculations is σphiHe u � 0( )ATOM ≈ 8.3310−18 cm2, that for the

GSPM is σphiHe u � 0( )GSPM ≈ 7.1310−18 cm2, the experimental

data indicate σphiHe u � 0( )exp ≈ 7.6310−18 cm2 (Ref. 31) and

σphiHe (u � 0)exp ≈ 7.4310−18 cm2 (Ref. 32). The recommended data

propose σphiHe (u � 0)ref ≈ 7.4310−18 cm2,
With regard to the high-energy asymptote of the data from

Ref. 31, it can be seen that they show systematically higher values.
Also, the increase in the cross-section near 100 eV is more pro-
nounced than in the recommended data. We note that at energies
around 100 eV, the small rise in the cross-section is due to double
photoionizationwith a threshold value of about 79 eV. Themaximum

FIG. 6. Comparison of photoionization cross-sections vs photon energy obtained
from the quantum mechanical numerical results of the ATOM code with the present
GSPM [Eqs. (4.1)–(4.6)] for the photoionization cross-section of the B-like neon from
the inner shell 1s. The energy at threshold is 1051 eV.

FIG. 7. Comparison of photoionization cross-sections vs photon energy obtained
from the quantum mechanical numerical results of the ATOM code with the present
GSPM [Eqs. (4.1)–(4.6)] for the photoionization cross-section of the ground state of
neutral neon. The energy at threshold is 21.6 eV.
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contribution is at about 120 eV and comprises about 4% of the total
cross-section. In the high-energy region, the ratio of double to single
ionization cross-sections reaches a constant value of about
0.0165.33,34

Let us now compare the GSPM [Eqs. (4.1)–(4.6)] with the
standard H-like model with effective charge. In this standard model,
the single-electron photoionization cross-section of H-like atoms is
employed, alongwith an effective charge calculated fromEq. (4.3), but
no energy scaling charge is applied, i.e., ~Z � Zeff. Figure 9 shows the
photoionization cross-section of helium calculated with the standard
H-like model (solid red curve) together with the reference data (green
curve) and the present GSPM (solid black curve). Although the slopes
of the high-energy asymptotes are very similar, the absolute cross-
section of the standard H-like model is systematically too low by a
factor of about 5. Moreover, in the near-threshold region, the

standard approach does not provide an adequate decrease in the slope
of the cross-section. This is distinctly different from the GSPM: in the
near-threshold region, the decrease in the slope of the cross-section is
very well described, as a comparison with the reference data dem-
onstrates (compare the solid black and solid green curves be-
low 100 eV).

Let us now consider the performance of the various methods for
much more complex cases: neutral neon (Fig. 10) and neutral argon
(Fig. 11). The behavior of the photoionization cross-section in the
low-energy region (i.e., photoionization from the outermost shell) of
such multielectron neutral atoms is very complex owing to the
multielectron correlation in the outer shells.32,35 Models based on H-
like wavefunctions may therefore provide only an order-of-
magnitude estimate of the cross-section.

With regard to the present ATOM calculations, the fitting pa-
rameters of Table I and the generalized ~Z-scaling relations (4.2), (4.5),
and (4.6), we are interested in applying the same fitting parameters as
proposed in Table I even to complex cases (to estimate the precision of
this general description). Evidently, the agreement in the outer shells
of complex atoms and ions is limited (as can be seen, for example,
from a comparison with experimental data on neon, argon, and
krypton to be discussed below), and more complex calculations are
needed if very high precision is required. Nevertheless, as the nu-
merical calculations and comparisons with the data show, the GSPM
still provides reasonable estimates of the cross-sections for the fixed
set of fitting parameters of Table I if the generalized scaling relations
(4.2)–(4.6) are employed. This is demonstrated for a number of
various rather complex cases (including neutral atoms and inner-shell
processes): Figs. 5–7 and 9 show very good agreement with the data.
Detailed comparisons for neon, argon and krypton are presented in
Figs. 10, 11, and 14.

Figure 10 compares the experimental data for neon31 (solid
green squares) with the standard H-like model (solid red curve) and
the present GSPM employing the recommended energies.36 In the
high-energy region (i.e., photoionization from the K shell), the

FIG. 9. Comparison of the photoionization cross-sections vs photon energy for
neutral helium in the ground state 1s2 1S0 calculated with different methods:
reference data from Ref. 30 (solid green curve), the present GSPM (solid black
curve), the standard H-like model with Zeff � ~Z (solid red curve), and the local
plasma frequency approach employing the Thomas–Fermi atomic model (solid blue
curve).

FIG. 10. Comparison of photoionization cross-sections vs photon energy for neutral
neon in the ground state 1s22s22p6 1S0 calculated with different methods: exper-
imental data from Ref. 31 (solid green squares); the present GSPM (solid black
curve); the standard H-like model with Zeff � ~Z (solid red curve); and the local
plasma frequency approach employing the Thomas–Fermi atomic model (solid blue
curve), the Sommerfeld analytical Thomas–Fermi model (dashed blue curve), the
Lenz–Jensen model (solid purple curve), and the numerical Hartree–Fock atomic
densities (solid yellow curve).

FIG. 8. Photoionization cross-section vs photon energy for neutral helium in the
ground state 1s2 1S0 (the energy threshold is at 24.58 eV). Comparison with the
reference data from Ref. 30 shows very good agreement with our quantum
mechanical numerical results obtained from the ATOM code and with the GSPM
[Eqs. (4.1)–(4.6)]. The experimental data from Ref. 31 show rather large deviations
in the high-energy region.

Matter Radiat. Extremes 5, 064202 (2020); doi: 10.1063/5.0022751 5, 064202-10

©Author(s) 2020

Matter and
Radiation at Extremes REVIEW scitation.org/journal/mre

https://doi.org/10.1063/5.0022751
https://scitation.org/journal/


standard model gives cross-sections that are much to low, while the
GSPM results are very close to the experimental data. In the low-
energy region (i.e., photoionization from the L shell), the standard H-
like model gives cross-sections that are much too low (by about a
factor of 20) and an incorrect slope. In addition, the edge-features are
too much pronounced compared with the experimental data. The
GSPM (solid black curve) provides a much better description of the
data: the features of a decreasing cross-section slope are rather well
described, while the absolute value of the cross-section is only about a
factor of 2 higher than the measurements. Despite the fact that the
GSPMemploys only the specificK-edge energies of neon but the same
P-parameters of Table I developed from the H-like model, the
comparison with the data is very good for such a complex case.

Let us consider neutral argon to identify systematics (employing
likewise the recommended energies from Ref. 36). Indeed, as was
observed for neon, the standard H-like model (solid red curve in
Fig. 11) gives cross-sections for the K and L shells that are much too
low, while the GSPM results (solid black curve in Fig. 11) are very
close to the experimental data. In the low-energy region (i.e., the
outermost M shell below about 300 eV), multielectron correlations
are very strong and the GSPM can provide only an order-of-
magnitude estimate, although the L edge and the very low-energy
region are described to within a factor of about 2.

Owing to the complexity of the photoionization cross-section in
the low-energy region (in particular the last outer shell) of multi-
electron atoms, statistical models are of great interest to estimate in a
general manner the behavior of the cross-section. The most critical
case should be a two-electron atom, i.e., the helium atom considered
in Figs. 8 and 9. The solid blue curve in Fig. 9 shows the photo-
ionization cross-section of helium in the local plasma frequency
approximation of Eq. (2.13) employing the atomic densities n(r) as
calculated from the Thomas–Fermi atom (in atomic units):

n x( ) � 32
9π3

Z2
n

χ x( )
x

( )3/2

, (6.1)

where

x � r

rTF
� 9π2

128
( )1/3 1

Z1/3
n

. (6.2)

The function χ(x) is the solution of the differential equation

d2χ x( )
dx2

� 1
x1/2

· χ3/2 x( ) (6.3)

with the boundary conditions χ(x � 0) � 1 and χ(x �∞) � 0 (isolated
atom). Because the plasma frequency is directly related to the density
[see Eq. (2.10)], the photoionization cross-section in the local plasma
frequency approximation can be written (in atomic units) as

σphiplasma rω( ) � 8π5/2

c
· r2ω · n3/2 rω( )

∣ dn r( )
dr ∣ r�rω

. (6.4)

The energy dependence of the cross-section in Eq. (6.4) is implicit,
because first the differential Eq. (6.3) has to be solved for the densities
as a function of the radius and then each radius has to be transformed
to an energy, namely, the plasma frequency according (in atomic
units) to

E � ωp � �������
4πn rω( )√

. (6.5)

In practice, however, it is not really necessary to solve the tran-
scendental Eq. (6.5), because to solve the differential Eq. (6.3), one
calculates the densities for all radii, and then all the energies are
known from Eq. (6.5) for each radius. Despite the simplicity of the
Thomas–Fermi model and the marginal statistical case (only two
electrons), the Thomas–Fermi model nevertheless provides a rea-
sonable estimate within a factor of 5 (compare the solid blue and solid
green curves in Fig. 9) over awide energy range from threshold to high
energies.

Figure 10 compares the local plasma frequency model for neon.
Surprisingly, the Thomas–Fermi model (solid blue curve) provides
overall agreement with the measurements to within a factor of 3 even
in the complex low-energy region of outer-shell photoionization. A
similar observation can be made for argon (Fig. 11): the Thomas–
Fermi model provides a reasonable estimate over the whole energy
interval. It is therefore of interest to study the performance of the
analytical Sommerfeld model approximation37 of the Thomas–Fermi
atom, i.e.,

χSommerfeld x( ) � 1

1 + x
1443/2( )λ2( )λ1/2, (6.6)

with

λ1 � 1
2
· 7 + ��

73
√( ) ≈ 7.772 (6.7)

and

λ2 � 1
2
· −7 + ��

73
√( ) ≈ 0.7720. (6.8)

The Sommerfeld approximation is depicted in Figs. 10 and 11 by
the dashed blue curves. It is observed that for the photoionization
cross-section in the local plasma frequency approximation, the result
of the Sommerfeld approximation of the Thomas–Fermi model is
only marginally different from the exact solution of the differential

FIG. 11. Comparison of photoionization cross-sections vs photon energy for neutral
argon in the ground state 1s22s22p63s23p6 1S0 calculated with different methods:
experimental data fromRef. 31 (solid green squares); the present GSPM (solid black
curve); the standard H-like model with Zeff � ~Z (solid red curve); and the local
plasma frequency approach employing the Thomas–Fermi atomic model (solid blue
curve), the Sommerfeld analytical Thomas–Fermi model (dashed blue curve), the
Lenz–Jensen model (solid purple curve), and the numerical Hartree–Fock atomic
densities (solid yellow curve).
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equation. It can therefore be concluded that the exact solution of the
Fermi atom differential equation provides no real advantage com-
pared with the Sommerfeld approximation of Eqs. (6.6)–(6.8).
Therefore, the photoionization cross-section (6.4) has an entirely
analytical solution, since the derivative of the Sommerfeld density
[employing Eqs. (6.1), (6.2), and (6.6)] is likewise an analytical
function:

dnSommerfeld r( )
dr

� 1
rTF

· dnSommerfeld x( )
dx

∣∣∣∣∣∣∣∣x�r/rTF, (6.9)

dnSommerfeld x( )
dx

� 16 · Z2
n

3π3
· χ x( )

x
( ) ·

x · dχ x( )
dx

− χ x( )
x2

, (6.10)

dχSommerfeld x( )
dx

� −
λ1λ2

2 · 1443/2 ·
x

1443/2( )λ2−1 · 1 + x
1443/2( )λ2( )λ1

2 −1

1 + x
1443/2( )λ2( )λ1 .

(6.11)

Let us briefly discuss the result of the local plasma frequency ap-
proximation employing the Lenz–Jensen atomic density, namely,

χLenz−Jensen x( ) ≈ 3.7 · exp −
����
9.7x

√( ) · 1 + 0.26 · ����
9.7x

√( )
9.7x( )3/2 . (6.12)

The results for neon and argon are shown by the solid purple curves in
Figs. 10 and 11. In general, the Lenz–Jensen cross-sections are lower
than the Fermi atom cross-sections in the low-energy region, whereas
they are rather close in the high-energy region.

Let us finish the discussion by considering the use of the atomic
densities obtained from self-consistent-field Hartree–Fock calcula-
tions. These atomic densities are given by

n r( ) � 1
4πr2

·�
nl

Nnl · ∣Pnl r( ) ∣ 2, (6.13)

where Pnl(r) are the radial wavefunctions and Nnl are the electronic
shell occupations. The wave functions and atomic density are nor-
malized according to

∫∞
0

4πr2n r( )dr � ∫∞
0

�
nl

Nnl · ∣Pnl r( ) ∣ 2dr � Zn. (6.14)

The solid yellow curves in Figs. 10 and 11 show the corre-
sponding cross-sections. In the high-energy region, we observe a
cutoff of the cross-sections. This is a consequence of the particular
atomic electron density distribution that is depicted in Figs. 12 and 13
for neutral krypton.

In the Hartree–Fock approximation, the atomic density
approaches a constant value for small radii: see the solid black curve in
Fig. 10. Therefore, the plasma frequency has a finite value (the right-
hand scale in Fig. 12). For the Thomas–Fermi model and the
Lenz–Jensen model, the density increases for small radii, and
therefore the plasma frequency increases too and the corresponding
cross-sections do not exhibit a cutoff. Although this appears to

indicate better agreement with experimental observations (where the
photoionization cross-section has a decreasing asymptote rather
than a cutoff), this is a misconception. The Hartree–Fock atomic
density is supposed to be more accurate than the Thomas–Fermi and
Lenz–Jensen densities, indicating a limitation of the local plasma
frequency model to the interval from threshold until the cutoff en-
ergies. The constant atomic density for small radii can be understood
from the simple H-like 1s wavefunction

P1s � 2rexp(−r). (6.15)

At the origin, the density (6.13) is constant, and the plasma frequency is
consequently limited. The failure in the high-frequency domain is not
really a drawback in the local plasma frequency approach, because the

FIG. 12. Atomic electron densities vs radius for neutral krypton in the ground state
1s22s22p63s23p63d104s24p6 1S0 calculated within the framework of the Har-
tree–Fock method20 (solid black curve), the Thomas–Fermi model (solid red curve),
and the Lenz–Jensen model (solid blue curve). The right-hand scale indicates the
plasma frequency associated with the atomic electron density.

FIG. 13. Radial wavefunction densities Nnl · ∣Pnl(r) ∣ 2 vs radius for neutral
krypton in the ground state 1s22s22p63s23p63d104s24p6 1S0 calculated within the
framework of the Hartree–Fockmethod:20 total electron density (black solid curve); s
wavefunctions (other solid curves); p wavefunctions (dashed curves); d wave-
functions (dotted curves). Principal quantum numbers are designated by different
colors: K shell (red curve); L shell (blue curves); M shell (green curves); N shell
(purple curves).
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high-energy region is related to photoionization from inner shells. This
domain, however, is very well described by the present GSPM.

Exceedingly interesting, however, is the low-energy region,
where the collective atomic oscillation via the plasma frequency
corresponds to the multielectron correlation in the Hartree–Fock
calculations. In fact, inspecting the outer-shell region of the photo-
ionization cross-section [i.e., the energies below 1 keV for the neon
atom (Fig. 10) and the energy region below 300 eV for the argon
atom (Fig. 11)] we observe a certain resemblance of the experimental
data to the results of the plasma frequency model employing the
Hartree–Fock wavefunctions (compare the solid yellow curves with
the solid green squares). The experimental data for neon and argon
show a rise in the cross-section in the very low-energy region up to a
maximum. In particular, the very low-energy region corresponds to a
cross-section rising up to a maximum followed by a fall-off. This
behavior is likewise seen in the yellow solid curves in Figs. 10 and 11.
Moreover, in the case of argon, the experimental data show aminimum
near 0.1 keV that is likewise seen in the yellow solid curve in Fig. 11. The
collective behavior can also be explored via the nl-dependent radial
wavefunctions. Figure 13 shows the case for neutral krypton. It can be
seen that for small radii (i.e., high frequencies), the 1s wavefunction
[i.e., N1s · ∣ P1s(r) ∣ 2] is dominant over the 2s, 3s, and 4s wave-
functions, with a maximum near r1s ≈ 0.029 a.u. Therefore, the col-
lective behavior is limited. For lower frequencies, increasing collective
behavior is expectedbecause already the secondmaximumnear r≈ 0.13
a.u. is a composition of essentially 2p, 2s, 3p, 3d, and 3s wavefunctions,
while the third maximum near r ≈ 0.43 a.u. is a composition of mainly
3d, 3p, and3swavefunctions. Finally, the plateau featurenear r≈ 1.5 a.u.
is essentially composed of the 4p, 4s, and 3d wavefunctions. Note that
the threshold for photoionization is related to the plasma density
corresponding to a radius near r ≈ 2.5 a.u.

VII. RADIATION FIELDS AND PHOTOIONIZATION
RATES

Below, we provide simple formulas for the photoionization rate
for different types of radiation field. An arbitrary radiation field can be
described by the photon energy density ~N(E), i.e., the number of
photons per unit volume per unit energy (e.g., in units of cm−3 eV−1)
at a certain energy E. In this case, the photoionization rate 〈σphinl 〉 is
given by the expression

〈σphinl 〉 :� ∫∞
Enl

σphinl E( )c ~N E( ) dE, (7.1)

where Enl is the ionization energy of the optical electron in quantum
state nl, and c is the speed of light.

Let us first consider a Gaussian energy dependence, which is a
typical assumption to simulate the narrow bandwidth of a laser:

~N E( ) � ~N0
1��
π

√ Γ exp −
E−E0( )2
Γ2( ), (7.2)

Γ � δE/ 2 ���
ln 2

√
, (7.3)

where E0 is the central energy of the radiation field, ~N0 is the peak
number of photons per unit volume, and δE is the bandwidth.
Assuming a Gaussian time dependence f(t) of the radiation field and

~N E, t( ) � ~N E( ) · f t( ), (7.4)

with

∫+∞
−∞

f t( ) dt � 1, (7.5)

the number of photons Ntot,τ per pulse length τ is given by

Ntot,τ � ∫∞
0

dE ∫
volume

dV ∫+τ/2
−τ/2

dt ~NFEL E, t( )

≈ 2A cτ ~N0erf
���
ln 2

√( ) ≈ 0.761 · Acτ ~N0

, (7.6)

where A is the focal spot area and

erf(x) � 1��
π

√ ∫x
0

e−y
2
dy (7.7)

is the error function.38 The laser intensity ~I E, t( ) per bandwidth
energy and time interval is related to the photon density ~N E, t( ) via

~I E, t( )dE dAdt � ~N E, t( ) · E · dEdVdt. (7.8)

Integrating the radiation field over a full width at half maximum
(FWHM) with respect to energy and time, I

̄
δE, τ (energy per unit time

per unit surface area) is given by

̄IδE,τ � ∫δE/2
−δE/2

dE ∫τ/2
−τ/2

cdtE · ~N E, t( )

≈ 4E0c ~N0erf
2
���
ln 2

√( ) ≈ 0.579 · c · E0 · ~N0, (7.9)

or, in convenient units,

̄IδE,τ ≈ 2.8310−9
~N0

cm3( ) E0

eV
( ) W

cm2[ ]. (7.10)

The number of photons Ntot,τ is related to the intensity ̄Iτ via

̄Iτ � 2 · erf ���
ln 2

√( ) ·Ntot,τ · E0

π τ · d2/4 ≈
Ntot,τ · E0

τ · d2 , (7.11)

where d is the diameter of the focal spot. Let us estimate the intensity
̄Iτ for typical XFEL parameters: forNtot,τ � 1012, τ � 10 fs, E0� 10 keV,
and d� 3 μm,we have fromEq. (7.10) that ̄Iτ ≈ 1.831018 W/cm2 and
from Eq. (7.6) that ~N0 � 6.231022 cm−3, i.e., the photon density in
the light pencil is near the solid density of usual materials.

If we assume that the central laser energy is many times the
bandwidth above threshold and that the variation of the pho-
toionization cross-section with energy is negligible over the
bandwidth (e.g., if the radiation field is produced by a laser),
then the photoionization rate (unit 1/time) per atom is readily
given by Eqs. (7.1) and (7.2) at the central radiation field
energy E0:

〈σphinl 〉 ≈ σphinl E0( )c ~N0. (7.12)

~N0 is related to the laser intensity or total photons in the laser pulse
according to Eqs. (7.6) and (7.11):
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~N0 �
̄Iτ

4 c E0 · erf 2
���
ln 2

√( ) � 2 ·Ntot,τ

π c τ d2 · erf ���
ln 2

√( ), (7.13)

from which it follows that

〈σphinl 〉 ≈ σphinl E0( ) · ̄Iτ
0.579 · E0

≈ σphinl E0( ) · Ntot,τ

0.598 · τ · d2 . (7.14)

Let us now specify the opposite situation, where the radiation
field is very broad. For this purpose, we consider a Planckian radiation
field, which is of particular interest for advanced opacity measure-
ments,39 inertial confinement fusion, and high-energy-density sci-
ence.7 If Tr is the radiation temperature, then the number of photons
at energy E per unit volume and unit energy is given by (k is
Boltzmann’s constant)

~N E( ) � E2

Z3π2c3
· 1
exp E/kTr( )− 1

, (7.15)

or, in convenient units (number of photons cm−3 eV−1)

~N E( ) � 1.318 7131013 · E2

exp E/kTr( )− 1
1

cm3 eV
[ ], (7.16)

withE and kTr in eV.As thePlanckianfield is a very broad radiationfield
distribution with respect to the details of atomic structure, the de-
pendence of the photoionization cross-sections on energy is important
and the photoionization rate has to be obtained from numerical inte-
gration of Eq. (7.1). Inserting the Planckian radiation field of Eq. (7.15)
into the general integral (7.1) for the photoionization rate, we obtain
with the help of the analytical expression for the photoionization cross-
section [Eqs. (4.1) and (4.2)] the following expression:

〈σphinl 〉 :� ~Z

Zeff
( )2

· πa
2
0Ry

Z3π2c2
· m

2l0 + 1
· P1 · ∫∞

0

u + P2

u + P3
·

1

u + P4( )7/2+l0 ·
~Z
2
Ry · u + En0 l0( )2

exp (~Z2
Ry · u + En0 l0)/kTr( )− 1

· du. (7.17)

The scaled energy parameter u in Eq. (7.17) is given by Eq. (4.2),
and the other parameters are the same as specified in Eqs. (4.1)–(4.6).
Equation (7.17) is of great relevance for applications in integrated
simulations in high-energy-density science and inertial confinement
fusion, where successive photoionizations involving inner-shell
phenomena play an important role during the time evolution of
the heated material.

Figures 14(a) and 14(b) show the photoionization rates calcu-
lated for a Planckian radiation field as functions of the radiation
temperature Tr for argon and krypton, respectively. The solid green
curves were calculated using the experimental data on the photo-
ionization cross-sections from Ref. 31. The solid red curves were
calculated from H-like cross-sections using the standard scaling
relation with effective charge, i.e., ~Z � Zeff . This approximation
shows a rather large deviation from the exact rates (solid green
curves), whereas the GSPM developed above provides very good
overall agreement (solid black curves).

Surprisingly, the analytical local plasma frequency model
employing the analytical Thomas–Fermi atomic densities (solid blue
curves) provides likewise rather good agreement with the exact data,
whereas the Lenz–Jensen atomic densities give rates that aremuch too
low (solid purple curves). It is interesting to note that the self-
consistent Hartree–Fock atomic densities employed in the frame-
work of the local plasma frequency model seem to provide no better
agreement than the simple Thomas–Fermi model.

One can therefore conclude that photoionization rates driven
by a Planckian radiation field might be well approximated in the
framework of the GSPM developed above or the local plasma fre-
quency model employing the Thomas–Fermi atomic densities in the
analytical Sommerfeld approximation described by Eqs. (6.1)–(6.11).

VIII. CONCLUSION

A generalized scaled photoionization generalized scaled pho-
toionization model (GSPM) for the photoionization of an optical
electron in shell nl from any configuration has been developed. It is
based on the simultaneous introduction of effective charges for en-
ergies Zeff and scaling charges ~Z for the energy scale. Quantum
mechanical numerical calculations demonstrate excellent agreement

FIG. 14. Photoionization rates vs radiation temperature for argon (a) and krypton (b) in a Planckian radiation field calculated with different methods: experimental photoionization
cross-sections (red solid curves); the present GSPM (solid black curves); the local plasma frequency model using self-consistent Hartree–Fock atomic electron densities (solid
yellow curves), Thomas–Fermi atomic densities (solid blue curves), and Lenz–Jensen atomic densities (solid purple curves).
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for H-like ions over a wide energy interval from threshold to the
asymptotic region. Extension to inner-shell photoionization dem-
onstrates good agreement between the analytical approach and
quantum mechanical calculations. The generality, simplicity, and
capacity of the GSPM to handle all types of inner-shell phenomena
enables its simple implementation in complex integrated simulations,
such as for radiation field interaction with matter and matter heating.
Finally, we have studied a statistical approach to photoionization
cross-sections that is based on the local plasma frequency model in
which the atomic oscillations are described by the plasma frequency
determined from the atomic density. This approach is of particular
interest for complex atoms and for photoionization from the out-
ermost shell, where fully quantum calculations that include electron
correlations are rather difficult. Comparison with experimental data
demonstrates that the simple analytical Sommerfeld solution of the
Thomas–Fermi atom provides a surprisingly reasonable description
within the overall energy range from threshold up to high energies,
opening up wide perspectives for the description of complex atoms
and ions (e.g., the study of scaling relations and providing a cross-
checking method for complex numerical quantum mechanical and
integrated calculations). The studies of photoionization of complex
atoms in a Planckian radiation field demonstrate that the GSPM as
well as the simple Thomas–Fermimodel in the local plasma frequency
approximation provide good and numerically very efficient methods
of calculation.
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